About—
Polar Ice

How fast does it melt? An expedition seeks the answer.

By BENJAMIN POWELL

ONE of the objectives in the forthcoming American expedition to Antarctica is to check on the status of the stupendous ice fields and glaciers of that little-known continent. The particular point of inquiry concerns whether the ice is melting at such a rate as to imperil low-lying coasts, and whether melting is not at all sudden.

IN THE SOUTH

The Antarctic Continent is about 9,000,000 square miles. It is

HOW MUCH DANGER?

A greater potential danger (nevertheless remote) is the Greenland Ice Cap. Here is an enormous rounded hump of ice, piled over the mountains of the world's largest island. The ice covers about 764,000 square miles, leaving a sparse fringe of exposed rock around the coast. The thickness is believed to average about 1,500 feet, but soundings have indicated depths of 10,000 feet or more.

Elsewhere in the Northern Hemisphere are great deposits of ice and snow in the Himalayas, Alaska, the Alps and the Scandinavian mountains. There is no doubt that the ice of the far north is melting faster than it is replaced by new snowfalls. Sinking most of the Arctic gets only about 8 inches of precipitation a year. Glaciers all around the northern world are receding at a steady measurable pace, and have been for several generations. Yet the rate of retreat is so slow as to leave no rise in tide levels sufficient to alarm mariners. Greater solar radiation is given as the cause of the recession, but greater solar radiation also increases the rate of evaporation.

Assuming a very rapid, alarming instantaneous melting of Greenland's ice alone, it has been estimated that the level of the oceans would be increased about twenty-five feet. But, scientists point out, conditions bringing about such a catastrophe are not of such a catastrophic nature that there would probably be no one left around to do the worrying anyway.
Read Widely

This section and the chapter notes are also available at Global-Fever.org, augmented with live links.

When undertaking this book on our global fever, I decided to write a cheerful book in parallel. It became Almost Us: Portraits of the Apes. You might wish to employ a similar back-and-forth strategy when reading more about our big problem.

If you haven’t already, I’d suggest reading

Then consider reading one or more of these books:

Robert Henson. The Rough Guide to Climate Change. Rough Guides, 2006. Don’t be fooled by the travel-books connection. It’s one of the best of the reader-friendly books that could also be used for climate courses. The author is a science writer at the National Center for Atmospheric Research in Boulder, Colorado.

Mark Lynas. Six Degrees. Fourth Estate, 2007. His chapter on the consequences of a 1°C fever is sobering enough, but then he works his way through the consequences of the 2, 3, 4, 5, and 6°C fevers and “Choosing our future.” Very well done. It also shows that with a first-class honors
degree in history and politics, you can read and understand much of climate science.

Joseph J. Romm. *Hell and High Water*. William Morrow, 2007. An excellent book of climate science plus advocacy by a former acting Assistant Secretary in the U.S. Department of Energy. The author is a Ph.D. physicist and oceanographer by training but his father was a journalist—and it shows.

Then consider these when branching out:

On the web, I would initially avoid search engines because of the disinformation problem for climate matters. Try

RealClimate.org, done by real climate scientists,

Professor Stephen Schneider’s climate website, stephenschneider.stanford.edu,

American Institute of Physics, www.aip.org/history/climate/links.htm

Pew Center on Climate Change, www.PewClimate.org,

Climate Institute at Climate.org,

ClimatePrediction.net

The National Center for Atmospheric Research at www.ucar.edu/research/climate/future.jsp.

Union of Concerned Scientists at ClimateChoices.org.

Rocky Mountain Institute at www.RMI.org.

World Resources Institute, at WRI.org. Their *Navigating Numbers*, by Kevin A. Baumert, Timothy Herzog, and Jonathan Pershing, is quite useful.

BBC’s updated climate pages at www.bbc.co.uk/sn/hottopics/climatechange/

American Association for the Advancement of Science at www.aaas.org/climate/

They all have a list of recommended links to other sites, regularly updated. The Society of Environmental Journalists has an excellent list of lists for all sides of climate change at www.sej.org/resource/index18.htm—it even includes the Birdwatcher’s Guide to Global Warming!

Armed with some of the science, you can gradually branch out to the wider web. See how quickly you can spot the front organizations for the not-a-problem promoters of business as usual through more delay. Most of them have invented fancy names for themselves in order to slip past your guard; most include some good science to help disguise their propaganda. Once you are good at it, test your skills at GlobalWarming.org. See the Union of Concerned Scientists’ 2007 report on ExxonMobil’s $23-million attempt to mislead the public at ucsusa.org/assets/documents/global_warming/exxon_report.pdf.

More advanced readers should take a look at

- Intergovernmental Panel on Climate Change, 2007 Summary for Policymakers for each of the three working IPCC groups, at www.ipcc.ch. There are also Technical Chapters with all the references up to late 2005.
Illustration List

Most of these illustrations may be freely borrowed for non-commercial and educational uses. They may be downloaded from Global-Fever.org.

Edvard Munch, *The Scream of Nature*

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
</table>
| 1. The Big Picture
1956 newspaper clipping on global warming | 2 |
| 2. We’re Not in Kansas Anymore
Tornado in Dimmit, Texas
Floods increase worldwide, decade after decade
Three tropical cyclones at once
Muir Glacier, Alaska
More forest fires when hot
Wildfires increase worldwide
Rain Decrease 1925-1999 North of Equator | 2
12
12
14
17
18
18
18 |
| 3. Will This Overheated Frog Move?
Rise in global average temperature after 1850
The Keeling curve of rising CO2
History of fossil fuel uses and projections beyond 2004
The rise and fall of CFCs
Antarctica’s giant ozone hole of 2006 | 23
23
26
27
28 |
| 4. “Pop!” Goes the Climate
The collapse of the Larsen B ice shelf in 2002
Surface melt beginning in West Antarctica | 38
39 |
| 5. Drought’s Slippery Slope
Oklahoma farm yard after 1935 dust storm
1934 and 1956 drought maps of U.S.
Decade-scale droughts in western U.S. after 1600
Major droughts in U.S. West during Little Age Age
Dust dune scene in Dust Bowl
Century-scale droughts in the last 2,000 years
Wall of dust in 1935 Texas | 43
45
47
48
48
52
54 |
Wall of dust approaching an Oklahoma Main Street 54
Drip irrigation diagram 57
Agricultural water wasted 57

6. Why Deserts Expand
Evaporation loss with center-pivot irrigation 58
Crop circles in Kansas 58
The ups and downs of wet and dry air 60
Desertification from expansion of Hadley Cells 61
Parched vegetation near Perth, Australia 62
Areas of reduced rainfall by 2080 64
Low morning clouds along the Amazon River 65
Amazon Basin fires and flammability zones 66
Jump in CO2 if tropical forests burned 69

7. From Creeps to Leaps
New Orleans after the dikes failed 70
Inside a Seattle pothole 74
Teton Dam failure in progress 75
Airplane stalls and the power curve 81
Hillside plow 82
The collapse of the Newfoundland fisheries 82

8. What Makes a Cycle Vicious?
Thermometers showing feedback effects 86
Negative feedback stabilities engine speed 88
Light bulbs and the sun’s input to Earth 90
Greenland thaw 94
Maximum and minimum extent of African savannas 97

9. That Pale Blue Sky
Dust clouds from the Sahara blow across the Atlantic 100
Tug of War that is heating and cooling the Earth 103
Mount Pinatubo eruption into the stratosphere 105
The Earth’s brightness (albedo map) 106
Agricultural fires worldwide 109
Special kerosene torch for starting agricultural fires 109
10. Slip Locally, Crash Globally
Graph of the growth in world use of fossil fuels 110
Fallout from coal-fired coal plants in the U.S. 110
Blue pond of melt water on shoulder of Greenland 113
Long lakes wedging open crevasses 115
Lakes along shoulder of western Greenland 116
Icebergs emerging from Jacobshavn Isbrae 117
West Antarctic Ice Sheet map 118
Sea-level rise 125,000 years ago was 6 m higher 120
Deltas of Asian rivers flooded by 6 m rise in sea level 123
Bangladesh areas flooded by 6 m rise 123
European areas flooded by a 6 m rise 124
Detail showing the Low Countries and 6 m rise 125

11. Come Hell and High Water
Map of Atlantic and Gulf Coasts with 6 m rise 126
The capital of the Maldives behind a sea wall 128
What’s left of Florida after a 6 m rise 129
What’s left of the Gulf Coast after a 6 m rise 131
U.S. Capitol and Pennsylvania Avenue with 6 m 133
New York and Newark with 6 m rise 134
World Trade Center entrance with 7 m rise 136
Lower Manhattan and Brooklyn with 7 m rise 136
Subway stair cascades during 1992 N’easter flood 137
Thames Barrier holding back the highest tides 137
Projected storm surge barriers for New York City 137
Population density of the U.S. East Coast strip 138
East Coast strip with 6 m sea-level rise 139
Boston and the new Harvard Peninsula with 6 m 140
San Francisco, Seattle, and Vancouver 141
Sea-level rise during the twentieth century 143
Sea-level rose much faster than 2001 IPCC estimates 144
Sea-level has risen faster than 3 m per century 145
Icequakes under Greenland outlet glaciers 146

12. Methane Is the Double Threat
Greenhouse gas fluctuations for 400,000 years 150
Canary and coal miner 153
Permafrost thaw lakes in Siberia 155
The ice that burns 156
The methane offshore of Santa Barbara, California 156
The growth in methane is slowing 157
Agriculture is a third of the emissions pie 159
The global fever score: HUMANS 13, SUN 1 160

13. Sudden Shifts in Climate
Two stable states 162
Trucks that passed the tipping point 162
Abrupt climate flips during the last 100,000 years 164
El Niño and La Niña episodes since 1970 165
Shift in Pacific Ocean thermocline during El Niño 167
Ups and downs of air across the Pacific Ocean 167
Sea level change during El Niño 169

Carbon feedbacks exaggerate predicted warming 171
A carbon-sinking zooplankton 172
World map for tiny ocean plants 172
Coral bleaching from environmental stress 174
Coral bleaching and wipeout in the Caribbean in 2005 175
Diatoms 177
The pH of ocean waters is becoming more acidic 178
Bloom in the Pacific Northwest 180
Sand dust plumes in southern Africa 180
Large bloom fertilized by dust plume from Iceland 180
Iron mixing on the Kerguelen plateau 181
Losing forest carbon sinks 182
Wave-driven pump brings nutrients to surface 184

15. The Extended Forecast
Carbon emission scenarios for 2020 and 2040 turnarounds 188
Thirty-eight years of a Greenland ice core 190
2007 IPCC scenarios of twenty-first century fever 192
Climate sensitivity range of estimates 194
Arctic sea ice declined faster than projections 196
Giant wind turbine in Sweden 201
16. Doing Things Differently
Fossil fuel use per person in major countries 203
Electricity per person in the seven most populated states 206
California has held electricity per person constant 207
68% of U.S. electricity from fossil fuels, grew 140% 209
France gets only 9% from fossil fuels, grew 260% 209
China gets 82%, grew 1100% in 32 years 210
U.K. gets 75%, grew only 60% 210
Switzerland gets 1%, grew 100% 211
India gets 85%, grew 1000% 211
A 1600 mw coal-fired power plant near Las Vegas 212
Three entire coal trains a day 212
Where U.S. energy (all uses) comes from 214
Where it goes 214
Electricity’s use of energy (70 percent wasted) 215
The terminus of a 1,500 km DC transmission line 215
The best places for wind farms in the U.S. 216
North American and offshore sites for wind farms 216
Offshore sites for wind farms 216
The flywheel principle and the spinning wheel 217

17. Cleaning Up Our Act
Mount Baker and two shoreline refineries 218
Wedging strategy for stopping growth in emissions 223

18. The Climate Optimist
The power of basic knowledge (medical branch) 229
Additional impacts as global fever rises 230

19. Turning Around by 2020
The Gap between Business-as-usual and a recovery plan 238
The lights left on, all night long (U.S.) 243
The clean side of a 750 mw power plant 246
Zimmer power plant on the Ohio River 247
Few coal-fired power plants have been retrofitted in U.S. 248
Planned additional coal plants in the U.S. 248
The best places for geothermal energy in the U.S. 251
Hot Rock Energy two-well diagram 253
Two-well geothermal power plant 255
Map of nuclear power plants of the world 257
Maps of U.S. deaths from coal plant pollution 261
Comparison of AC and DC power transmission 265
Solar roofs in Ota City, Japan 266
Concentrating solar tower in Seville 267
Table of C-free energy sources, advantages and downsides 271

20. Arming for a Great War
The path to climate restoration 274

21. Get It Right on the First Try
The evolution of world CO2 emissions 280
The collapse on Easter Island 293

Where you are standing was underwater 317
About the author 332
Notes

The following notes are also on the web at Global-Fever.org, referenced by this book’s page numbers and including web links to many of the citations. Author (year) citations usually refer to a book in the **What to Read** section.

Chapter 1. The Big Picture

7 These estimates do not include the effects of tropical forest fires on carbon emissions, which are much more difficult to measure. When the 1997/98 El Niño episode provoked severe droughts in the Amazon and Indonesia, large areas of tropical forest burned, releasing 0.2 to 0.4 Pg of carbon to the atmosphere. If droughts become more severe in the future through more frequent and severe El Niño episodes, or the dry season becomes lengthier due to deforestation induced rainfall inhibition, or there are rainfall reductions due to global warming, then substantial portions of the 200 Pg of carbon stored globally in tropical forest trees could be transferred to the atmosphere in the coming decades. Global carbon emissions from fires during 1997/98 El Niño are estimated at 2.1 ± 0.8 PgC and South and Central America contributed ~30% of global emissions from fires. See www.joanneum.at/Carboinvent/post2012_/Bird/santilli_et_al_2005.pdf.

Chapter 2. We’re Not in Kansas Anymore

12 Tornado in Dimmit, Texas: photograph by Harald Richter at www.photolib.noaa.gov/nssl/nssl0179.htm

14 Three hurricanes south of Japan on August 7, 2006, from visibleearth.nasa.gov/view_rec.php?id=20946, credit Jeff Schmaltz. “The slanting diagonal feature through the image is sunlight bouncing off the ocean into the MODIS instrument [on the satellite], a phenomenon called sunglint. The very bright swath is where the reflection is strongest.”

17 Muir glacier pair: nsidc.org/cgi-bin/gpd_run_pairs.pl

19 Richard Lindzen, in Newsweek (2007) at www.msnbc.msn.com/id/17997788/site/newsweek. See also Daniel Grossman’s interview, “Profile: Dissent in the Maelstrom,” Scientific American (November 2001). Lindzen is a serious climate scientist who thinks that an “infrared Iris” associated with stratus cloud production and tall thunderheads will result in a climate sensitivity of only one-third the IPCC estimates. I hope he is right, though personally I would not go around telling people not to worry on the strength of a preliminary theory—nor describe ExxonMobil as “the only principled oil and gas company I know in the US.” See news.bbc.co.uk/2/low/business/6595369.stm.

For the less established climate dissenters, a tendency to shift targets with time raises questions of whether it’s really about the science or about something else. “Whatever the science is, they will try to find ways to question it,” says Naomi Oreskes, a geologist and science historian at the University of California, San Diego. “That makes it clear that the issue for them is not the science.” See Michael Hopkin, “Climate sceptics switch focus to economics: As the scientific case strengthens, dissenters change tack.” Nature (10 February 2007) 582, at dx.doi.org/10.1038/445582a.

Chapter 3. Will This Overheated Frog Move?

Roger Revelle and Hans E. Suess. “Carbon dioxide exchange between atmosphere and ocean and the question of an increase of CO2 during the past decades.” Tellus 9 (1957) 18-27.

Jim Hansen’s presentation at the National Academy of Sciences in April 2006 is on his Columbia University website, www.columbia.edu/~jeh1.

Ozone hole, see earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17436.

Ten recommendations for reducing U.S. carbon emissions:

1. Immediately freeze carbon dioxide emissions and then begin a program to reduce them by at least 90% by 2050.
2. Replace the payroll tax for Social Security and Medicare with a tax on pollution, particularly carbon dioxide.
3. Use a portion of the tax on pollution to help low-income individuals adapt as carbon emissions are reduced.

5. Enact a moratorium on the construction of any new coal-fired power plants that are not compatible with carbon capture and sequestration.

6. Create an ‘Electranet,’ a smart grid in which power generation is widely distributed. Homeowners and small businesses could use solar and wind energy generators and sell that energy into the grid at a rate that is determined by the market.

7. Raise Corporate Average Fuel Economy (CAFE) standards for automobiles, and set energy standards for other industries.

8. Set a date for a ban on incandescent light bulbs.

9. Create a ‘Connie Mae,’ a carbon-neutral mortgage association that would help homebuyers pay for energy reduction measures such as insulation and energy-efficient windows that can have high upfront expenses.

All necessary, but far too weak. Maybe this is what it takes to get Congress moving at last, but those ten are the easy stuff, what would have been appropriate twenty years ago. If we don’t do considerably more, and quickly, it will be like rearranging the desk chairs on the Titanic.

I would instead emphasize the 2020 urgency requiring many new nuclear or geothermal power plants, retiring many old coal plants, converting to plug-in hybrid electric vehicles, and subsidizing DC power lines to developing countries with coal.

Chapter 4. “Pop!” Goes the Climate

39 This satellite image shows the 2002 breakup of the Larsen B Ice Shelf. See Eugene Domack et al., “Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch.” Nature 436 (2005): 681–685. This region, covering approximately 3250 km² with 200 m thick ice, had been continuously glaciated since before the end of the last glacial period. Adapted from NASA Terra/MODIS imagery via www.GlobalWarmingArt.com. The 2005 melt/refreeze episode is at earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17661

Chapter 5. Drought’s Slippery Slope

40 woodyguthrie.org/Lyrics/Dust_Storm_Disaster.htm.

43 My synopsis of drought feedbacks derives from a brief talk in 2000 by J. M. Wallace.

44 Recent evaporation seeding the next rainfall: that is going to be a big problem in the Amazon. Today, the flat bottom of the clouds (where the dew point is) isn’t very high off the ground. But with greenhouse warming, that flat bottom will move up to much higher in the sky—and so not mix very well with the recent evaporation. The clouds will continue westward until running into the Andes and dropping some rain there. It will flow down the Amazon river as it does now but the lush vegetation on the riverbanks will be gone—likely burned off during the onset of drought.

47 Connie A. Woodhouse, Jonathan T. Overpeck, “2,000 Years of

49 Worster quote at www.pbs.org/wgbh/amex/dustbowl/peopleevents/pandeAMEX06.html.

51 Also from Woodhouse and Overpeck (1998).

51 A 1 m rise in sea level would change the frequency of what are now 100-year floods in metropolitan New York to once in every four years events. See ccr.ciesin.columbia.edu/nyc/ccir‐ny_q2a.html and C. Rosenzweig and W.D. Solecki (Eds.). Climate Change and a Global City: The Potential Consequences of Climate Variability and Change - Metro East Coast. Report for the U.S. Global Change Research Program, National Assessment of the Potential Consequences of Climate Variability and Change for the United States (Columbia Earth Institute, New York, 2001).

52 Although originally named the Medieval Warm Period, the temperature change does not seem to have been uniform around the globe. It is best thought of as a period of widespread climate anomalies preceding the better-defined Little Ice Age.

54 Dust wall photos from NOAA’s George E. Marsh Album via commons.wikimedia.org/wiki/Image:Dust.

57 Irrigation, see ga.water.usgs.gov/edu/irsprayhigh.html and www.worldwatch.org/node/811.

58 Kansas crop circle irrigation photo from earthobservatory.nasa.gov/Newsroom/NewImages/Images/kansas_AST_2001175_lrg.jpg.

Chapter 6 Why Deserts Expand

61 George Hadley, “Concerning the cause of the general trade
winds,” *Philosophical Transactions*, 39 (1735).

63 Long-term drought indicator blends at www.drought.unl.edu/dm/monitor.html.

68 Fred Pearce, “Global meltdown.” *The Guardian* (30 August 2006). environment.guardian.co.uk/climatechange/story/0,,1860560,00.html

Chapter 7. From Creeps to Leaps

70 U.S. Coast Guard photograph of New Orleans on the day after Hurricane Katrina, 2005, after three levees had failed.

73 Snowballing, see Pittock (2005): 110ff, for an excellent discussion on nonlinear effects in climate.

75 The Teton Dam, 44 miles northeast of Idaho Falls in southeastern Idaho, failed abruptly on June 5, 1976 when being filled for the first time. Engineers were actively looking for leaks and saw a wet spot. However, the collapse progressed so rapidly that several large bulldozers were lost and downstream communities only had one hour of warning. The dam failure released nearly 300,000 acre feet of water, which flooded farmland and towns downstream at the loss of 14 lives and a cost of $1 billion. See npdp.stanford.edu/npdphome/npdpimages/Photo%20Gallery/fullimages/IDS00007_003_f.jpg.

77 Restaurant lead-lag dynamics: muller.lbl.gov/pages/
GLOBAL FEVER

news%20reports/ebexp.htm.

Chapter 8. What Makes a Cycle Vicious?

The figure is from “Discoveries & Inventions of the Nineteenth Century” by R. Routledge, 13th edition, published 1900.

89 Good use is made of positive feedback by nerve cells and muscles. It’s what makes things happen quickly. It shortens your reaction time enough so that you have quick reflexes and don’t go bouncing down a flight of steps. Your computer uses positive feedback in much the same way to shorten each step of the computing cycle. When the first flip-flop circuits were invented for computer bits, they operated on about the same timescale as nerve cells (milliseconds). Now they (but not the nerve cells) are a million times faster, operating in nanoseconds.

95 Water vapor amplifies CO2 warming by 40–50 percent: IPCC 2007 WG1 SPM.

96 “When CO2 increases the storage of heat in the lower atmosphere, it promotes more evaporation from the tropical oceans.” By
itself, this positive feedback is somewhat self-regulating as high humidity means more clouds and their whiteness reflects some sunlight back out into space, somewhat countering the heating effect of more water vapor in the atmosphere. Since cloud formation also depends on a number of other things such as the size of smoke particles, the balancing act is not well understood yet. For example, agricultural fires create soot whose particles are large enough to seed water droplet formation. Power plants burning fossil fuels produce smaller particles and less rainfall downwind.

98 Ted Scambos quote at earthobservatory.nasa.gov/Newsroom/MediaAlerts/2006/2006100323310.html.

Chapter 9. That Pale Blue Sky

In addition to balloons, sulfur could be distributed via jet fuel. To avoid adding sulfur to the lower atmosphere, one fuel tank on an airliner would be filled with sulfur-free fuel and used on the climb up to cruising altitude (which accounts for about one-quarter of a long flight’s fuel consumption). But when cruising above the weather, the sulfur-enhanced jet fuel would be used.

Chapter 10. **Slip Locally, Crash Globally**

107 Power plant fallout map adapted from exhibit 3–1 in cta.policy.net/fact/mortality/mortalityabt.pdf

109 Fire maps created by Jacques Descloitres, MODIS Rapid Response System at NASA/GSFC. See rapidfire.sci.gsfc.nasa.gov/firemaps/.

110 Deaths from coal, adapted from Exhibit 6–1 Premature Mortality Risk Attributable to PM2.5 from Power Plants, 2010 Baseline, at www.cleartheair.org/dirtypower/docs/abt_powerplant_whitepaper.pdf

112 The Google Earth software is at earth.google.com; once installed, go to WilliamCalvin.com/2006/GoogleEarth_PlacemarkGreenlandShoulder.kmz for a view of the pockmarked western shoulder of Greenland. Startup and find the terrain toggle so there is a readout of Lat/Long/Elev. Once positioned over the west coast of Greenland at about 70°N, start moving south, zooming in on the long east-west tongue of Jakobshaven Isbrae (once an ice shelf, until warmer waters undermined it and broke it up like Larsen B). Then move east to see the lakes on the shoulder of the ice sheet. Finally travel south, keeping lakes in sight. The drainage of these lakes is likely setting up the collapse of the southern half of the central Greenland ice sheet.

114 Greasing the skids: Jay Zwally et al, “Surface melt-induced acceleration of Greenland ice-sheet flow,” Science 297(2002): 218–222. Also, from studies in Iceland, the water that gets trapped under the ice cannot refreeze if it is under so much pressure that it cannot expand into ice. And so it is forced up into whatever cracks the icy bottom affords. If finding space to expand, it freezes. The heat given up in freezing warms the surrounding ice, beginning a self-destructive cycle along the bottom of the ice sheet that crumbles the attachment to the bedrock. There’s more at www.pbs.org/wgbh/nova/transcripts/3211_megafloo.html.
NOTES

115 Quoted by Pearce (2006): 70.

119 Plankton appear in various roles in scenarios for pumping down carbon in an ice age. Fertilization: the higher winds of an ice age should carry a lot more iron-rich dust into the Atlantic from the Sahara and Namib deserts. Expanded habitat: the reduced meridional heat transport during an ice age cools the North Atlantic, and Lovelock (2006) argues for the cooler oceans allowing plankton to thrive in more places and so pumping down carbon faster. The jury is still out on their relative importance, and certainly regarding how they might be manipulated to solve our CO2 problem.

122 Richard Alley quote from Pearce (2006).

Chapter 11. Come Hell and High Water

131 Most of the sea-level maps were produced, thanks to Jonathan Overpeck and Jeremy Weiss, with the mapping software at the University of Arizona. See www.geo.arizona.edu/dgesl/research/other\climate_change_and_sea_level/sea_level Rise/sea_level_rise.htm.

133 Max Mayfield, director of the National Hurricane Center, quoted in Reuters interview (22 August 2006).

135 PATH station in Hoboken during a 1992 nor’easter. This and the WTC entry photos are from the Metro New York Hurricane Transportation Study, 1995.

145 The graph of sea-level rise in the last 24,000 years is from the 2007 IPCC Summary for Policymakers WG1. I have extensively modified the Washington Monument photograph at en.wikipedia.org/wiki/Image:Washington_Monument_Dusk_Jan_2006.jpg.

![Image](https://global-fever.org/poster.png)

Where you are standing was underwater the last time Mother Earth spiked a 3°F fever. Will the cooking frog leap in time?

My print-your-own color poster, suitable for posting within 20 ft of sea level, is in a PDF file at Global-Fever.org/#posters, together with directions for determining where to post it using GPS units or Google Earth. For a similar project, see nytimes.com/2007/06/16/arts/design/16chal.html.

Greenland ice about 125,000 years ago is inferred from models; see 2007 IPCC report WG1 technical chapters.

Chapter 12. Methane Is the Double Threat

CO₂, CH₄ and temperature records from James E. Hansen, *Climate Change* 68 (2005): 269.

When you hear the phrase, “Doubling CO₂,” it refers to the pre-industrial CO₂ level of 275 ppm being doubled to 550 ppm of CO₂ equivalents. The natural range for CO₂ between ice-age minima and maxima is about 100 parts per million. We have already gone 110 ppm past the historical maximum and need to add at least 50 ppm for the CO₂ equivalents of the increased concentrations of methane and other GHGs.

concentration of the air, anoxia likely affected the Oracle.

158 Ocean acidification figure adapted from the Hadley Centre’s HadOCC model; via John Holdren’s MBL slide (2006).

159 Agricultural waste problem, see www.virtualcentre.org/en/library/key_pub/longshad/A0701E00.pdf.

Chapter 13. Sudden Shifts in Climate

162 “Winds gusting to more than 100 mph swept across northern Utah on Friday, overturning 20 tractor-trailers….Winds reached 113 mph setting a state record…. ” Photo by Marta Storwick for the Standard-Examiner of Ogden, Utah (23 April 1999), with permission.

Illustration adapted from the National Oceanic and Atmospheric Administration’s El Niño Web site, www.pmel.noaa.gov/tao/elnino. Technically, an El Niño is when mid-Pacific sea surface temperature stays more than 0.5°C above normal for four months. A La Niña is when it cools more than 0.5°C for four months (although some may use La Niña for the normal midrange as well). A La Niña situation often follows an El Niño episode and is essentially its opposite. During a La Niña, the easterly trade winds near the equator are stronger than normal. They push more warm surface waters westward across the Pacific. The colder, deeper waters that well up to the surface in their place extend far out into the central equatorial Pacific. The historical El Niño chart is at www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.ppt.

Chapter 14.

A Sea of CO2

The data snapshot is from March to June, the northern sunlight making the bloom there more than in the southern hemisphere winter. Nutrients are a major limitation. Besides nutrients from rivers, they are also up-welled to the surface in some areas (line in mid-Pacific Ocean where trade winds converge, also on the west coast of continents). For the original color version of the world phytoplankton imaging, see earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17332. Maps, see neo.sci.gsfc.nasa.gov/Search.html?group=12. If you have Google Earth installed, see neo.sci.gsfc.nasa.gov/RenderData?si=493385&cs=rgb&format=KMZ.

The pictures are thanks to Russell Hopcroft (Cavolinia uncinata, left), Victoria Fabry (C. tridentata, right), and Laurence Madin (Salpa aspera).

The wave-driven pump to raise deep water to the surface is best seen in the archived presentations at atmoccean.com.
Chapter 15. The Extended Forecast

188 The 2020 turnaround is modified from a slide in John Holdren’s MBL talk (November 2006), see www.whrc.org/resources/PPT/JPH_MBL_11-03-06_Clim-Chg-Challenge.ppt.
190 The photograph shows a 1 meter section of the GISP2 ice core from a depth of 1837 meters in the Greenland Ice Sheet. From GlobalWarmingArt.com/wiki/Image:GISP2_Ice_Core.jpg.
201 Wind turbine in Skåne, Sweden. Photograph by Väsk at commons.wikimedia.org/wiki/Image:Vindkraftverk_i_Sk%C3%A5ne_febru...

Chapter 16. Doing Things Differently

206 California vs. US electrical use per person from www.eia.doe.gov/emeu/states/sep_use/total/use_csv. Table of all states at www.eia.doe.gov/emeu/states/sep_sum/plain_html/rank_use_per_cap.html.

Chapter 17. Cleaning Up Our Act

222 Wedges, see www.princeton.edu/~cmi/resources/stabwedge.htm.
224 UN’s 2007 expert group: www.UNfoundation.org/SEG/.

Chapter 18. The Climate Optimist

231 E. O. Wilson (personal communication, 2006) put the extra-long, extra-warm El Niño time frame this way: “…could burn down so much of the remaining rain forests in Southeast Asia and the Amazon that as many as half the remaining species of plants and animals could face early extinction.”
232 High-speed toll gates: A quick method that avoids the high costs of creating a new roadside network would be to install old cell-phone technology in the vehicle and simply use it to detect when the vehicle crosses from one cell to another—and billing accordingly. See www.newscientisttech.com/channel/tech/mg19225815.600-cellphone-

232 In the U.S., many people pay far more in payroll taxes (mostly Social Security, Medicare, and unemployment taxes) than they have withheld for income tax.

236 FDR 1940–1941 leadership, see pp. 44–59 in Doris Kearns Goodwin’s No ordinary time (Simon and Shuster, 1994).

237 Jack Doyle, Taken for a ride: Detroit’s Big Three and the politics of air pollution (2000). Indeed, I’d say that Detroit’s automakers may need a new purpose in life (and I’d suggest temporarily repurposing the manned part of NASA’s space program as well). All of that talent is badly needed for more important tasks.

Chapter 19.

Turnaround by 2020

Compressed air car: see en.wikipedia.org/wiki/Air_car and “World’s First Air-Powered Car: Zero Emissions by Next Summer” in Popular Mechanics (June 2007) at www.popularmechanics.com/automotive/new_cars/4217016.html. “India’s largest automaker is set to start producing the world’s first commercial air-powered vehicle. [It] can hit 68 mph and has a range of 125 miles. It will take only a few minutes for the CityCAT to refuel at gas stations equipped with custom air compressor units; MDI says it should cost around $2 to fill the car’s carbon-fiber tanks with 340 liters of air at 4350 psi. Drivers also will be able to plug into the electrical grid and use the car’s built-in compressor to refill the tanks in about 4 hours.”

For the nuclear fuels in the fly ash, see Alex Gabbard’s analysis at www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html.

Capture CO2, see “Future of ‘Clean Coal’ Power Tied to (Uncertain) Success of Carbon Capture and Storage” at www.sciam.com.

Jeff Goodell, Big Coal (Houghton Mifflin, 2006).

From its summary illustrating the challenge of scale for carbon capture and long-term storage:

- Today fossil sources account for 80% of energy demand: Coal (25%), natural gas (21%), petroleum (34%), nuclear (6.5%), hydro (2.2%), and biomass and waste (11%). Only 0.4% of global energy demand is met by geothermal, solar and wind.
- 50% of the electricity generated in the U.S. is from coal.
- There are the equivalent of more than five hundred, 500 megawatt, coal-fired power plants in the United States with an average age of 35 years.
- China is currently constructing the equivalent of two, 500 megawatt, coal-fired power plants per week and a capacity
comparable to the entire UK power grid each year.

- One 500 megawatt coal-fired power plant produces approximately 3 million tons/year of carbon dioxide (CO2).
- The United States produces about 1.5 billion tons per year of CO2 from coal-burning power plants.
- If all of this CO2 is transported for sequestration, the quantity is equivalent to three times the weight and, under typical operating conditions, one-third of the annual volume of natural gas transported by the U.S. gas pipeline system.
- If 60% of the CO2 produced from U.S. coal-based power generation were to be captured and compressed to a liquid for geologic sequestration, its volume would about equal the total U.S. oil consumption of 20 million barrels per day.
- At present the largest sequestration project is injecting one million tons/year of carbon dioxide (CO2) from the Sleipner gas field into a saline aquifer under the North Sea.

Dave Duchane and Don Brown, “Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico,” GHC Bulletin (December 2002): 13–19, at geotherm.oit.edu/bulletin/bull23-4/art4.pdf. “It was found entirely feasible to operate the plant for extended periods of time with no on-site personnel, a fact that has important economic implications for the ultimate commercialization of HDR technology.” This refers to the recirculating well side of the system with heat exchanger, not a complete plant with subsequent electricity generation from the heat exchanger. From “Building a Hot Rock Energy System” at hotrock.anu.edu.au:

Heat is extracted by pumping water through an engineered heat
heat exchanger connecting two or more wells. This heat exchanger is a volume of hot dry rock with enhanced permeability. It is fabricated by hydraulic stimulation. This involves pumping high pressure water into the pre-existing fracture system that is present in all rocks to varying degrees. The high pressure water opens the stressed natural fractures and facilitates micro-slippage along them. When the water pressure is released, the fractures close once more but the slippage that occurred prevents them from mating perfectly again. The result is a million-fold permanent increase in permeability along the fracture systems and a heat exchanger that can be used to extract energy.

In a typical system, an initial borehole is sunk into the hot rock mass and a hydraulic stimulation is performed. A three dimensional microseismic network deployed on the surface and in nearby wells is used to record the little noises caused by the fractures widening as the pumping continues over several weeks. In this way, the progress of the stimulation is monitored and the size and shape of the growing heat exchanger is mapped.

A second well is then drilled into the margin of the heat exchanger 500 m or more from the first well. Now water can be pumped through the underground heat exchanger and in superheated form it can be returned to the surface. There it can have its energy extracted before being reinjected to go around the loop again.

Of course, if you drill in an earthquake-prone area, the little earthquakes that result may become strong enough to feel (see en.wikipedia.org/wiki/Hot_dry_rock_geothermal). If there are also a lot of people around to notice—as was the case in a Basel suburb in December 2006—much fuss may result even for 3.4 strength earthquakes with no injuries. The reason for locating the wells within the city was presumably the 2,700 households to be heated from the plant’s excess (in addition to the 10,000 people who would get their electricity from it. It might speed deployment for Hot Rock Energy to locate wells elsewhere and use the spare heat for co-located greenhouses and such.

Photo credits: Ormat.com for Lyete, The Philippines. For the
much-altered diagram, the MIT geothermal report of 2006.

259 Updated death toll for energy sources can be found at www.uic.com.au/nip14app.htm.

263 Advanced fast reactors: “If developed sensibly, nuclear power could be truly sustainable and essentially inexhaustible and could operate without contributing to climate change. In particular, a relatively new form of nuclear technology could overcome the principal drawbacks of current methods—namely, worries about reactor accidents, the potential for diversion of nuclear fuel into highly destructive weapons, the management of dangerous, long-lived radioactive waste, and the depletion of global reserves of economically available uranium.” William H. Hannum, Gerald E. Marsh, George S. Stanford, “Smarter use of nuclear waste,” Scientific American (December 2005): 84. At gemarsh.com/wp-content/uploads/SciAm-Dec05.pdf.

265 AC vs DC transmissions lines, illustration adapted from “Bulk power transmission at extra high voltages, a comparison between transmission lines for HVDC at voltages above 600 kV DC and 800 kV AC,” an ABB Power Technologies presentation by Lars Weimers, n.d.

268 One interesting use of biofuels would be if they were burned for electricity and the CO2 captured and sunk. It still has the hazards of CO2 storage burps, and I cannot imagining it having the sheer capacity for sinking the accumulated atmospheric CO2 that plankton enhancement would have. Biofuels news story by Stephen Leahy at www.ipsnews.net/news.asp?idnews=38384.

Chapter 20. Arming for a Great War

277 FDR in 1940: “I know that private business cannot be expected to make all of the capital investments required for expansion of plants and factories and personnel which this program calls for at once... [The] Government of the United States stands ready to advance the necessary money to help provide for the enlargement of factories, of necessary workers, the development of new sources of supply for the
hundreds of raw materials required, the development of quick mass transportation of supplies."

A new “cost plus fixed fee” contract allowed the government to defray all costs essential to the execution of defense contracts and guarantee the contractor a profit through a fixed fee determined in advance. In other words, the government assumed primary financial responsibility for the mobilization process. From Doris Kearns Goodwin’s No Ordinary Time (Simon and Shuster, 1994), 59.

Chapter 21. Get It Right on the First Try

278 David Attenborough (2006), quoted at books.guardian.co.uk/review/politicsphilosophyandsociety/0,,1945625,00.html

292 The quote is attributed to Edmund Burke.

About the Author

WILLIAM H. CALVIN

Born in 1939 in Kansas City, I grew up in real Middle America, though I now have an overlay from living in Seattle since 1962. I did a lot of journalism and photography before college, majored in physics at Northwestern University, then branched out into neurophysiology via studies at MIT, Harvard Medical School, and the University of Washington (Ph.D., Physiology & Biophysics, 1966). That biophysics background, plus a quarter-century of following the literature, is why I can talk shop with the climate scientists and oceanographers.

I’m now Affiliate Professor Emeritus at the University of Washington School of Medicine. I’ve had a long association with academic neurosurgeons and psychiatrists without ever having had to treat a patient. Most of my research has been about brain cells and circuits, along with the big-brain evolutionary history. I started paying attention to climate when trying to understand how our big brains evolved so rapidly during the Ice Ages. I’ve written fourteen books in twenty-eight years and have begun incorporating my photographs (many of which can be found via my website, WilliamCalvin.org).
cyclooe, 138, 184
deforestation
decay rate, 157
deforestation diesel, 268
denial, 47, 49, 50, 187, 277
Department of Energy, 248, 298, 326
dew point, 44, 65, 191, 111
diabetic, 4
diamond, Jared, 15, 269, 273, 297, 308
diatomaceous earth, 196
diet, 4, 5, 197, 205, 207, 227, 242, 244, 279, 285
disinformation, 23, 27, 38, 49, 102, 104, 117, 118, 287, 289, 299
drilling rigs, 256
drought, 6, 34, 41, 42, 44, 45, 46, 47, 51, 52, 53, 62, 64, 65, 67, 82, 83, 99, 148, 163, 168, 182, 230, 253, 267, 268, 271, 301, 311, 313
droughts, 4, 11, 13, 41, 45, 47, 48, 51, 52, 53, 68, 84, 87, 103, 108, 176, 192, 193, 230, 236, 249, 276, 301, 307
dust, 41, 46, 47, 48, 51, 52, 53, 62, 100, 180, 301, 302, 312
dust Bowl, 49
dust storms, 190
earthquake, 83, 246, 252, 329
earthquakes, 15, 56, 127, 157, 252, 308, 329
Easter Island, 173, 306
economists, 8, 54, 77
Edison, Thomas, 213
efficiencies, 38, 281
efficiency, 10, 16, 79, 211, 222, 232, 239, 242, 244, 249, 257, 267, 271
egypt, 97, 123
Ehrlich, Paul, 83
exponential growth, 73, 74, 76, 89
ExxonMobil, 104, 301, 308
Fagan, Brian, 298
Faustian, 229, 236, 281
Federal Carbon Board, 222
Federal Reserve Board, 220, 222
feedback, 87
ferrell cell, 61
fertilizers, 233, 234
flapper valve, 184, 323
flood zone, 129
floods, 13, 31, 127, 135, 193, 197, 262, 276, 312
Florida, 46, 61, 126, 128, 130, 131, 168, 303
fossil fuel, 10, 20, 151, 152, 159, 164, 193, 196, 208, 225, 230, 231, 238, 264, 301
Fourier, Joseph, 22
France, 9, 29, 208, 209, 254, 257, 263, 283, 305
frog, 24, 25, 99
Frost, Robert, 72
Galapagos Islands, 167, 173
Gammon, Richard, 295
gardner, Debs, 295
Geldspan, Rosa, 298
geronides, 121, 239, 281
geo-engineering, 104, 107, 178
geothermal, 4, 9, 201, 212, 222, 223, 233, 250, 252, 253, 254, 255, 256, 264, 282, 283, 284, 305, 310, 327, 328, 329
Germany, 281, 255, 264
Gore, Al, 30, 85, 297, 310, 314
Grand Banks, 82
Grand Canyon, 312
granite, 249, 251, 252, 256
Graubard, Katherine, 295
great barrier reef, 175
Guthrie, Woody, 40, 311
greenhouse effect, 31, 91, 95, 156
greenwashing, 245
gulf coast, 126, 303
gulf stream, 13, 61, 163
Guthrie, Woody, 40
hadley cell, 61, 62
hadley, george, 61
hansen, James, 26, 92, 152, 173, 256, 297, 300, 309, 314, 319
haze, 104, 107, 212
heat exchanger, 255, 256, 328, 329
heat island, 102
heat pump, 250
heat waves, 11, 13, 103, 107, 176, 182, 192, 230
Henon, Robert, 297
herbicide, 178
holdren, John, 19, 203, 309, 321, 324
hot dry rock, 251, 328
hot rock energy, 201, 251, 254, 255, 256, 282, 305, 328, 329
hot springs, 91, 252
humidity, 35, 43, 44, 56, 95, 96, 314
hurricanes, 13, 14, 127, 130, 134, 168, 174, 191, 192, 308
hybrids, 10, 233, 281
hydroelectric, 268, 271, 283
hydrogen fuel cell cars, 244
GLOBAL FEVER
INDEX

Iceland, 115, 180, 182, 250, 304, 316
India, 64, 122, 211, 216, 262, 280, 305
Indonesia, 159, 269, 307
infections, 228
influenza pandemic, 189
insulating blanket, 135, 229
insurance, 31, 73, 127, 129, 200, 203, 213, 269, 287
IPCC, 11, 111, 128, 142, 143, 145, 147, 192, 194, 196, 198, 199, 300, 303, 304, 308, 309, 314, 316, 318, 319, 331
Ireland, 18
iron fertilization, 182
irrigation, 21, 55, 56, 57, 63, 98, 302, 312
island nations, 137
Jacobshavn Isbrae, 117, 303
Japan, 14, 259, 283, 306, 308
Johnston, Susan, 295
Joyce, Terry, 71
jury, 200, 317
Kansas, 5, 13, 15, 46, 58, 202, 269, 301, 302, 308, 312, 332
Katrina, Hurricane 68, 70, 174, 192, 313
Keeling curve, 23, 191, 301
Keeling, Charles David, 22
Kennedy, John F., 241
Kerguelen, 181, 184, 304, 323
King, Sir David, 135
King, Jr, Martin Luther, 290, 292
Körpinen, Sergei, 151
Kolbert, Elizabeth, 279, 298, 323
Krugman, Paul, 207, 325
Kyoto, 29, 204, 239, 273, 274, 309
La Niña, 46, 304, 322
land use, 196
landfills, 153, 224
leads and lags, 77, 78
leukemia, 260
Lewis, N., 279
Linden, Eugene, 298
Lindzen, Richard, 19, 308
linear thinking, 72
liquid natural gas (LNG), 154
Little Ice Age, 47, 48, 51, 52, 78, 312
London, 4, 61, 124, 134, 135, 137, 314, 323, 324
long Island, 133, 317
Los Alamos National Laboratory, 201, 251, 328
Los Angeles, 63, 121, 265, 331
LoveLock, James, 8, 9, 19, 32, 202, 239, 269, 298, 314, 317, 320
Lynas, Mark, 46, 148, 187, 297, 319, 324
MacCracken, Mike, 295
Magnetic resonance imaging (MRI), 264
makeover, 27, 201, 222, 240, 247, 270, 290, 291
“Makeover” Commission, 222
Maldives, 35, 128, 303
Malthus, Thomas, 76
Manhattan Project, 240
Martin, James, 83, 290, 292, 313, 331
Maurine Loa, 22, 23
McKibben, Bill, 11, 307
Medieval Warm Period, 51, 52, 312
Mediterranean, 59, 62
metaphors, 27, 33, 54, 55, 67, 71, 72, 83, 295
methane, 13, 25, 95, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 224, 233, 234, 245, 303, 304, 319, 320
methane hydrate, 156
Miami, 35, 121, 128, 129
microalgae, 176
Milankovitch factors, 144
Miles, Ed, 176, 295
mineralization, 252
MIT, 140, 254, 327, 328, 329, 332
Mitchell, Linda, 295
Mombiot, George, 29, 68, 161, 221, 272, 298, 313, 325
Mount Pinatubo eruption, 105, 302
mountain glaciers, 142
Mueller, George, 240, 326
 Muller, Richard, 77, 78
Mumbai, 121
Munch, Edvard, vi, 301, 307
Namibia, 180
NASA, 118, 240, 311, 316, 326
natural gas, 3, 6, 151, 153, 154, 156, 201, 210, 252, 238, 319, 320, 327
natural gas, CH4, 151
negative feedback, 87, 88, 89, 159
Netherlands, 35, 121, 124, 125
neurosurgeons, 269, 332
New Guinea, 165, 166, 167
New Jersey, 9, 132, 133, 134, 137
New Orleans, 35, 68, 70, 76, 121, 129, 131, 132, 276, 302, 313, 318
New Sacramento Bay, 141
Nobel Peace Prize, 290
No-C cars, 233
nor’easter, 134, 135, 317
Northwestern University, 80, 332
nuclear bomb, 261
nuclear magnetic resonance (NMR), 264
nuclear power, 9, 30, 38, 210, 223, 233, 235, 246, 237, 239, 260, 261, 262, 264, 265, 275, 282, 284, 305, 329
nutrient, 183, 184
Nygren, Carol, 295
O’Connor, Hans, 33, 295
Oklahoma, 43, 46, 55, 301, 311
Oracle at Delphi, 152
Overpeck, J., 47, 124, 311, 312, 317, 319, 324
INDEX

Sydney, 63
Tampa, 129
tankers, 154, 283
taxes, 5, 221, 232, 233, 277, 284, 289, 326
Tebaldi, C., 163, 321
technofix, 228, 288
Tel Aviv, 63
temperature anomalies, 20
Tennyson, Alfred, 189
terrorists, 276
Thames Barrier, 260, 261, 262
Tickell, Sir Crispin, 202, 295, 325	
tipping points, 32, 34, 68, 79, 84, 186

tobacco lobby, 208
Tokyo, 121, 291
topsoil, 42, 44, 46, 49, 81
trade winds, 23, 61, 165, 166, 167, 168, 191, 312, 322
transmission lines, 156, 234, 265, 284, 330

tree rings, 41, 96

Tuvalu, 35

Tyndall, John, 22
typhoons, 184

understatement, 30, 199
upwelling, 168, 180, 183, 184
uranium, 245, 248, 263, 330
vicious cycle, 5, 90, 156
Vietnam, 72, 123, 331
Vonnegut, Kurt, 278

voted off the island, 113, 117
Walker Cell, 166
Walter, Katey, 135
Washington, D.C., 129
water vapor, 34, 43, 44, 93, 96, 191, 314, Sv
humidity
Weart, Spencer, 198, 219, 299, 309, 324
weather forecasts, 189
weathering, 93
wedge, 222, 223, 224
Weiss, Jeremy, 124, 317
West Antarctic Ice Sheet, 37, 121, 303
White Earth Catastrophe, 91

wildfires, 13, 193, 197, 309
wind, 4, 7, 11, 40, 44, 64, 73, 163, 165, 179, 184, 201, 202, 212, 216, 217, 249, 282, 283, 304, 305, 310, 327
Woodhouse, C., 47
World War Two, 237
Wonster, Robert, 49
writing, 35, 97, 198, 295, 332
zooplankton, 172, 173, 176, 177, 179, 181, 304